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FAILURE RATE ESTIMATION USING RANDOM SMOCTHING
by

Douglas R. Miller
Nozer D. Singpurwalla

In this note, we 'investigate: some aspects of the distribution
theory of an estimator of the failure-rate function. We clarify, and give.
a slightly different approach to some asymptotic results of Singpurwalla

41975) for the failure rate process from exponential lifetimes. In addi-
tion, we extend these results to the case of gencral lifetimes. This

1 leads us to confidence regiong for. *randomly smoothed' versions of the

failure-rate function, for both finite and large samples.

Research Jointly Sponsored by
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FATLURE RATE ESTIMATION USING RANDOM SMOOTHING
by

Douglas R. Miller
Nozer D. Singpurwalla

1. Introduction

Let F be the distribution function of a random lifetime, and

let r = - %E log(1l-F) be its failure rate function. The purpose of this

note is to consider estimators of r based on complete and censored data,
and to investigate the related distribution theory for both the finite and

the infinite sample cases.

Consider a collection of  n .identical items which function inde-~
pendently of one another. Let Xi (Li) be the time to. failure (withdraw-

al) of the ith item. We assume that the Xi's are independent and identi-

cally distributed with distribution function F . The Li's are random

' .
withdrawal times which may have any joint distribution, but must be inde-

pendent of the X.,'s . Let Z, = min(X,,L,) ; thus, if Z, = X, , then
B e i 2 p S | i i

the ith item has failed at Xi , and if 7.i = Li , then the ith item was

withdrawn from observation at Li . Suppose that k failures have been

observed in all, and let

U = o < Z < 2 L
0 7(0) S

=@ " ="
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be the ordered failure times. Let Nn(t) be the total number of items

t
on test at time t , and let Tn(t) = [ Nn(u)du be the "total time on
0

test" at time t

We shall first define a '"maive" estimator of r , say Rn . AS

2 1
R (2) = z < g &
n T (7 ~ T (CZ .. 2 i-1 i (5
K (1)) n( (1_1)) (Giiby (1) (1.1)
= o Z. 2 L :
¥ (k)
Some Comments on the Naive Estimator
We note that the estimator Rn is the reciprocal of the total time
on test, on an interval over which it is defined. The estimator, in effect,
assumes a piece-wise exponential distribution between successive failure
points. In order to compute Rn(z) , we must look '"ahead" to the failure
which immediately follows 2z . Thus, the estimator Rn(z) is a left-
— continuous step function.

Assuming that there is no censoring or withdrawals (i.e., when k=n)
and assuming that n 1is large, Sethuraman and Singpurwalla (1977) show

that R\(z) is not consistent. They induce consistency by smoothing this
1)

estimator using windows of fi;ed width. The width of their windows depends,
adong other things, on the sample size n . In this paper, we shall consider
another smoothing procedure. However, we first obtain a right-continuous,
closed form version of our cstimator!(l.l).

!

Right-Continuous Version of the Naive Estimator

oy Sk

Let Fn denote the empirical distribution function of the Z

and let

F;I'(u) = infl{x : F(x) > u}
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be the right-continuous inverse of F with F—l(O) = 0 . Then, for
n n

Z Sz < Z

(i-1) (% Big

-1 oL -1 et
Fn Fn(z) = Z(i) and Fn (Fn(z) k

g
V= By

Thus, given k failures, a right-continuous version of our naive estimator,

in closed form, is

R (4} = L : (1.2)

= ; 1 -1 -1
rn(Fn Fn(z)) - Tn(Fn (Fn(z) S,

An analysis of the right- and the left-continuous versions of Rn(z)

will be the same, and thus we will not make any distinction of this through-
out our paper. However, the notation in Sections 3 and 4 will be simplified

by using right-continuity.

1.1 A Smoothed Version of the Naive Estimator

We next introduce what we call a "randomly smoothed'" version of our
naive estimator. Our motivation for choosing this smoothing technique is

given in Section 1.2.

For 0 <h <1, let

def
[hk(n)] = mindi, 'ah’integer : i > hk(n)} ;
that is, [hk(n)] is the smallest integer greater'than.or equal to hk(n)

where k(n) , the number of observed failures, is random. For Z(i-l) <

z<7Z7Z,,. , we define a smoothed estimator R (z) as
(i) —— A n,h

[}

[hk(n)]
R (z) = :
1) = TPt 1y’

In closed form, the above estimator can also be written as

(hk(n) ]
FL2) = T (FL(F (2)-h))

Rn h(z) 7

= . (.33
g T AE
n n

1
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If we set j = [hk(n)] , then for Z(i-l) <z < Z(i) .
B, 5 = g o e (1.4)
Tn(Fn Fn(z)) - Tn(Fn (Fn(z) - Jk(n)))

In the above expression, j 1is the number of failure intervals used in

estimating the failure rate at each fixed time point.

We now give two equivalent expressions for R ., in terms of Rn >
our naive estimator. These two expressions reveal the "smoothing' more
transparently. In Section 1.3 we shall show that for Z(i—l) S zS Z(i) »

j-1
=1 1 1
R @ = ] T (1.5)
»J 3 m=0 “n‘%(i-m)
and that
Z
r R (u)dr (u)
n n
“(i-1)
R .(2) = ! (1.6)
»J Z(l)
I dT_(u)
Lo
o (=1

Since Tn(t) is the total time on test at time ¢t , Equation (1.6)
can be regarded as the filtering of Rn(u) through a random window Tn(u) 5
the total time on test at time .u... We shall refer to this as the "total
time on test random window." . In the following section we present consid-
erations which led us to the choice of our smoothing technique. In the
sequel, we also introduce some notation which will be used later.

: 1.2 Justification for Smoothinngechnique

In retrospect, we state that a reasonable justification for the
choice of our smoothing technique is that it leads us to a tractable
distribution-free theory. However, a primary consideration which led us
to our smoothing technique was our desire to clarify and to expand the
asymptotic results of Singpurwalla (1975). Of particular interest is his

\ N,
Y’
|
e » — : ——
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Theorem 4.2, which states that for an exponential distribution, the

first difference of the reciprocal of the estimated failure rate converges
weakly to a moving average process. He uses this theorem to give a par-
tial justification for an empirical (Box-Jenkins type) time series analysis
of the estimated failure rate. Singpurwalla attempts to prove this theorem

by using the following theorem (see Section 2):

> - 1a . =3 -1 -
If F 1is exponential, then for ¢t € [k(n)’ e & 1= 2 e s KLY
" (3 " = A >
the '"total time on test process V[k(n)t] Tn(z(i—l))/qn(zk(n)) converges

weakly to the Brownian bridge w® [Billingsley (1968)]. If for any fixed
h, 0 <h <1, we define the difference operator V _ : [0,1] » [h,1] ;

h
Vh f(x) = f(x) - f(x-h) , then Vi w° is a moving average process. Thus,

considering the differences of the total time on test process V[ be-~

k(n)t]
comes quite natural.

We shall see in Section 3 that h = j/n , is the recip-

Y Yirtare]

rocal of our randomly smoothed estimator Rn J,(z) given by Equation (1.4);
’

this was the rationale behind the choice of our estimator.

We can provide some further insight into the choice of our smoothed
estimator if we note that the right-hand side of Equation (1.4) denotes
the total number of failures j > 1 divided by the total time on test

. :

between Z(i) and Z,. £y Thus, our smoothed estimator is merely an

(i-j
extension of our naive estimator, and is obtained by considering a random

interval Z , where j = [hk(n)] .

(1)~ “u-p

1

1.3 Equivalence Between the Versions of R” i(7.)
¥

It now remains to be shown that (Rn j(z))-l equals the right-hand

side of Equation (1.5), and that Equations (1.5) and (1.6) are indeed

equivalent.
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To see that the former is true, we note [cf. Barlow and Campo
(1975)], that

1 ==
—IZ(RH—) (Tn(z(i)) - Tn(z(i—j))) = I‘n(u)du

and that Rn(z) is specified by Equation (1.1).

In order to verify the equivalence between Equations (1.5) and (1.6),
we recall a property of the total time on test. This property [cf. Barlow
and Campo (1975)], states that the derivative of the total time on test is

the reciprocal of the failure rate.

1.4 Summary

The remainder of this paper is devoted to investigating the distri-
bution theory of Rn g 8 and demonstrating its usefulness.
’
In Section 2 we present some preliminary results, and in Section 3

we apply these to Rn h when F is exponential. Here we also clarify and
’

expand upon some of the results of Singpurwalla. 1In Section 4, we consider

the distribution theory of Rn h for both finite and large samples, and

present a theory for construction confidence bands for r , when r is

filtered through the total time on. test window.

In Section 5, we discuss the calculation of‘crltical values for
use in constructing confidence bands. 1In Section 6 we illustrate our tech-
nique for estimating the failure rate of AC generators, based on some real
11ife data. 1In Section 7 we generate failure data from a known distribution
and use it to estimate the failure rate. We conclude the paper with some

discussion of the technique.

2. Preliminary Distribution Theory

We shall assume the conditions of failure and random withdrawals,

as stated in Scction 1. We shall also adhere to the notation of Section 1.

- -
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The text of our paper is based on the following distribution-free
result. Lemma 2.1 is a mild extension of that due to Barlow and Proschan

(1969).

Lemma 2.1: For any distribution F (F(0~)=0) with failure rate

r(s) , the random variables

. Zi.
¥, = [ () TN (Wdu ,  i=1,2,...,k(n)
fe-1)

are independently distributed with density e Y >

Proof: The proof follows that of Barlow and Proschan, by condition-
ing over the values of Li and by assuming independence between the Li
and the Xi 3 /]

We recall that k(n) equals the observed number of failures from a
collection of n identical items.

Theorem 2.2: When n > @ ,

Z
. (f [ek(m] LN (u)du - tk(n)) LO<E<1y I U , 0<t <1},
Vk(n) \o X

5
where - indicates convergence of random functions and W is the standard

Brownian motion [Billingsley (1968)].

Proof: From Lemma (2.1),

z (tk(n)]
g @) LN yau = ) ¥, s (2.1)
0 & i=1

; :

the result feollows from Donsker's Theorem (Billingsley, p. 68). //

Corollary 2.3: When F is exponential with r(u) =X , u>0,

T (z,, 3
{M)(*‘L—k«%%(-@—)—]_-t).OEt_{l}-»{w(t) ’Of_til} ;

A . A 4 L B e O
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For completeness, we also present the following well-known theorem

[Pyke (1969), Shorack (1972)].

Theorem 2.4: When F 1is exponential with r(u) = X , u >0,

T (Z ) v
{/k(n) (~—“—T——£—;-k-—(-n—;i— = t) RS 1.} > W) ,0<t <1}, (2.2
n (k)

where W’ is the Brownian bridge [Billingsley (1968)].

Proof: The proof follows from the fact that

1 [tk(n)]
PR Rl e e

gt (]
5 i=1

and that

are distributed as the (k-1) order statistics from a uniform [0,1]

distribution [Karlin (1966)]. These in turn converge to a Brownian bridge.//

2 [En ()]
(a) p 1Ol R ) - @y au= ] -y
n Y ik
0 i=1
and
: 1 e | R .
@) == s 1O R ) - )N (du L 0 < e <P o) L 0< e < 1)

. Yk(n) 0

Proof: We first notle that

fz(i) R (u)N (u)du = . - fz(i) N (u)du = 1
n n T (Z ) - T (2 ) n K
Z(i—l) n (i) n  (i-1) Z(i—])

Part (a) of the theorem follows from this and Equation (2.1). Part (b) of

the theorem follows from Donsker's Theorem. //
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In terms of the '"total time on test process,'" part (b) of the above

theorem gives us

Z
(f (BB o gupatr ey~ PPR O r(u)dTn(u)) S0 e 1,}
/rin) 0
(2.3)
1 [tk(n)] H
={— ) (L-Y¥)p,0<ce=1}>Hue) , 8¢ =1}
—~— l/k(n) i-1
3. Asymptotic Theory for Exponential Lifetimes
In this section, and the following one, we derive some distribution
theory for our smoothed estimator Rn h " We do this by taking differences of
b
the expressions derived in Section 2.
The difference operator Vh was defined in Section 1.2. For any
fixed h , 0 <h <1, Vh is a continuous function in Skorohod's D-topology,
and thus when Vh is applied to the statement of Corollary 2.3, the continu-
: ous mapping theorem (Billingsley, Theorem 5.1) applies to give

___ % T (2 ) N
{/@(n) ( k(igk( L. Vht) smhR<t 5_1}‘3 {Vhw(t) y B2 e <}

Since Vht = h , and since Equation (1.3) implies

¢

(hk(n)]

(z , ) = ——
R, el ek(n) J-1) AR

we have proved
|

! Theorem 3.1: When F is exponential with r(u) = A , u

| v
(e)

I A

EJK(n) — 1. s %) , h hE W) s h e < 1} 5

til]"{v
n h ([tk(n)]-l)

which is equivalent to

| A
(ad
IA

o e
(tk(n)]

1
— li"{vhﬁw(t),h§t<l}

n h
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An analogous result can be proved by taking differences of (2.2).
Singpurwalla (1975) does this; however, he uses a sequence of difference

operators Vl/n + 0 . In this context, Theorem 5.5 of Billingsley must
be used. If we apply the operator Vl/n to the statement of Corollary

2.3, and assume that k=n , we obtain

2
.

e {/ﬁ (vl/nXTn(Z[tn]) N
n

il
=<t <
Vl/nt), n__tv_l

Since V1/nt = 1/n , and since Equation (1.1) implies

1
R (Z P
n  ({tn]-1) Vl/nTn(Z[tn))
we have
1 1 i D
=l = e e O
{/ﬁ (Rn(Z[tn]) A) )

The above result is result is consistent with the fact that the naive
- -1 T : ; Z
estimator Rn has a non-degenerate limiting distribution [cf. Sethuraman

and Singpurwalla (1977)]. Similarly, the limit in Theorem 4.2 of Singpur-
walla should be O.

3.1 Time Series Analysis of Failure Rates

The value of performing an.empirical time series analysis on the
egtimated failure rate was demonstrated by Singpurwalla. (1975). A goal
there was to obtain a limiting process of the form: a trend plus a Box-
Jenkins type ARIMA process. For complete samples, it follows from Theorem

3.1 that [

(R ]))'1 -t 4 ok h)‘lth(t) .

n,h(z[tn

that is, a constant plus the increments of a Brownian motion, which is
similar to discrete white noisc. An analogous result is observed by

Sethuraman and Singpurwalla for the naive estimator Rn . Thus it appears

that the desired goal of obtaining a limiting process of the form: a trend
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plus a Box-Jenkins ARIMA process is not possible, unless some additional

structure is assumed.

However, we conjecture that the above goal could possibly be realized
if the sample size is finite, and if the withdrawals are dependent on life-
times. We are studying this possibility in the light of the following
ramifications:

1. 1If the lifetimes are exponential, they do not age; this

makes it difficult to imagine how withdrawals depend on
the lifetime.

2. Without making restrictions on the life distributions,
it is impossible to determine from the data whether or
not withdrawals are dependent on lifetimes [Miller
(1976)].

4. Distribution Theory for General Lifetimes

As in Section 3, we apply the difference operator Vh to Equation

(2.3), and noting that h = j(k(n))“l , we obtain

Z Z [tk(n)]
il g (U@ g (wyar ) - 5 TR pgyar () - ] (1-v,)

Z([tk(m)1-§) Z([ek(n)]-3) i=[tk(n)]-j+1
(4 1)

We next define a '"randomly smoothed" version of r,

e
¢

Z,.
s @) r(u)dT_(u)

< 2 < 4

e () i

! Combining Equation (4.2) with' Equation (1.6) we obtain, for Z(i-l) <

=T
1
(Tn‘z(i)"Tn(Z(i—j)’)(Rn,j(z)‘rTn j(Z)) * ity

where Ym y m=1,2,...,k(n) are independent exponential random variables

with mean 1.




The analogous result for R is

n,h
-1 -1
[t & 'r @) - ‘Fn(z"h)’)(Rn,h‘Z) . rTn,[hk(n)](Z))
[k(n)Fn(Z)] [k(n)t]
= ) (-t ) = -y )
m=[k(n)(Fn(Z)-h)]+1 m=[k(n) (t-h) ]+1 t=Fn(z)
[k(g)t]
= Y (1-Y )
b ™| t=F_(2)

By Donsker's Theorem and the continuous mapping theorem we obtain

1 =1 =il =t =1
{ [t ot - 1 ten) (R Een - ),

A Tn, [hk(n)]
P
h<e< 1; > {th(t), < Ex 1} s (4.4)

Equation (4.3) can be used to find the finite sample confidence

bounds for the '"randomly smoothed" failure rate function T, . The
n,j
asymptotic (n?®) confidence bounds for rr can be obtained from
n[hk(n)]
Equation (4.4).
+ M | -
Let Cj o5 be the critical value such that ]
< +
P{ sup 2 (Y -1) < €. e }: 1-a ,
j<i<k(n) m=i-j+1 ™, Js&s
U
y ] :
,and define Cj A in a similar manner for the infimum. Then, a 100(1-a)%
| ’
upper confidence bound for L% is obtained from Equation (4.3) as
n,j
+ -1 -1 -1..1-1
R, ) + C, (T F {5 - - ) >
J,n(7) jykya n( n (Pn(7)) rn(Fn (Fn(z) LB — rTn j(z) 7
for all L <z <7
S ey = EED

& 10 -




T-347

The above simplifies to

+ -
Rj n(Z)(l ot Cj,k,a/J) , (4.5)

’

<z < Z

Z(j-l) < ) A lower confidence bound is similarly defined.

for

An approximate 100(1-0)7% confidence bound is obtained from Equation
i (4.4) as

+
h,®,a

Ry o (@) + A@ ¢ (@ @) - E @-) T

2 rT (2) ’
n, [hk(n)]

+
, where C is the critical

< 2
h,»,a

for all z , Z([hk(n)]-l) <z

value such that

(k)

+
< = -0 .
P{ sup V W(t) < Ch,w,a 1-a

h<e<i f

A lower confidence bound and a two-sided confidence bound can be similarly

— obtained.

5. Critical Values for Confidence Bounds for
Randomly Smoothed Failure Rate

To the best of our knowledge, there do not présently exist analytical

o+ e 5
or C . We therefore used a Monte

X +
methods for calculating Cj,k,a h,®,0

Carleo method to calculate selected values needed in Sections 6 and 7; these

are: I
' = ' +
€ 55,10 * ~996L 655, .10 = 5279
N = ~.9990 ct = 6.008
1,55,.06 " 1,55,.08 " %
¢ = 4,06 ¢t = 7.887
5,55,.10 ; 5,55,.10 © '*
T = -4.21 Cs = 9.02 . :

39554+05 54555405
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The values are based on one run consisting of 20,000 replicates. On a
second run, also consisting of 20,000 replicates, it was determined that
the four two-sided confidence bands using the above values would have
confidence values approximately equal to .8035, .8988, .8094, and .9052,
respectively. Thus, the one-sided critical values can be used for approx-

imate two-sided confidence bands.

6. Application to Failure Data on AC Generators

We illustrate our estimation and smoothing technique by considering
some failure data on AC generators reported in NAILSC Report ILS 04-21-72.
This data was previously considered by Castellino and Singpurwalla (1973),
and by Singpurwalla (1975). This data is presented in Table 1 and consists

of failure and removal (withdrawal) times.

In Figure 1 we present the estimated failure rate using Equation
(1.1). The confidence bounds using Equation (4.5) are so wide that they
are not useful!. For instance, a 90% lower bound is (1 - .9981)R(z) =

.0019R(z) , whereas a 90% upper bound is (1 + 5.279)R(z) = 6.279R(z)

In Figure 2 we show the estimated failure rate using Equation (1.4),

R We also show the 907 upper and lower confidence bounds for r. T

5,55 o

the randomly smoothed version of the true| failure rate. We remark here that

the estimator R5 55 was calculated using the current interval plus the two
b

leading and the two lagging intervals. Clearly, the smoothing leads us to
narrower bands than those obtained by considering single intervals. The main
issue here is that the confidence bands pertain to a version of r , rather
,than to r itself. Finall;, the periodic behavior of the failure rate,
observed by Singpurwalla (1975), is also exhibited by RS.SS . :

7. Application to Monte Carlo Example and a Discussion

In order to assess the performance of the above estimation procedure
in a known situation, we consider failure data generated from the failure

rate function

. I
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r(t)=(l +§+sin%)/12 ; (7.1)

In Table 2 we present the failure times, and in Figure 3 we show a
plot of r(t) . In Figure 4 we present a plot of the estimated failure

rate together with the 90% upper and lower confidence limits for

Re 552

Ty . In Tigures 5 and 6, we show the '"randomly smoothed'" failure rate
- n,>5

functions tr and rr , respectively. 1If we superimpose Figures 4
n,l n,>5S

and 6, we see that rT falls well within the confidence band.
n,>5

7.1 Concluding Remarks

We would like to give some interpretation to the randomly smoothed

failure rate r , smoothed by the total time on test window.

Suppose that we first consider Rn our naive estimator, which gives

a constant value over failure intervals. Thus, it is logical to consider
= this as an estimator of r averaged over the intorval of interest; however,

this is essentially rT . Unless some regularity conditions are imposed
n,1l

on r , it will be impossible to obtain confidence bounds for r over the
interval. Thus, in order to obtain confidence bounds, we consider L%

; EuR g : 0,1

instead of r . However, the confidence bound on ,rT . 1is so wide that
’ n,l

we smooth over more than one interval. Thus in essence, it is a small step

to go from smoothing over ope intervdl to smoothing over several intervals.

1 Finally, even though the smoothing window is random (it depends on the data),
it can be completely specified by the failure data and is thus completely known

for the purpose of interpreting the confidence band.
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TABLE 2
MONTE CARLO FAILURE TIMES
.127 . 406 .425 .635 .669
.041 1,132 1.156 1.488 1.788
.907 1,991 2.056 2.122 2.362
. 366 2.473 2.604 2.900 2.970
.083 3.372 3.557 3.943 4.012
.352 $a103 5.615 6.843 6.928
.280 7.942 8.310 8.311 8.546
=192 8.930 9137 9.241 9.561
.204 2.988 10.375 11.507 11,735
.748 13.301 13.508 14.435 15.518
.857 17.266 17.426 17.975 18.259




Figure 1l.--Empirical failure-rate (smoothed over single intervals)

for AC generator data, Table 1
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Figure 4.--Empirical failure-rate (smoothed over 5 T-347
intervals) for data in Table 2 with failure
rate r , Figure 3, with 90% upper and lower
confidence bounds for
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